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Questions
-- we try to answer

• Do we have enough RF power as the 
intensity increases?  If so, would it help 
the problem by adding 30 Hz harmonic to 
slow the accelerating ramp?  

• Do we need to use γt system to provide a 
faster transition crossing?
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Outline
1. Measuring the phase jump at the transition crossing  to 

estimate whether or not running out of RF power. 
2. Developing diagnostic tool to measure the particle 

distribution in the longitudinal phase space.
3. Experimentally investigating the relationship between 

the beam energy loss and the beam intensity in both the 
6-GeV slow acceleration and the 8-GeV normal 
acceleration.

4. Developing experimental procedures for solving the γt
quad-steering problem, which is essential for the 
commission of the γt system.
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1.Phase jump at the transition cross as indicator of 
whether or not run out of RF power?
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the same Booster bunch was plotted at one trace per 8 Booster turns. 
The same time scale (2 ns/div). 1(a) the beam intensity is 0.4×1012. 
1(b) the beam intensity is 1.2×1012.  1(c) the beam intensity is 1.9×1012. 
1(d) the beam intensity is 2.63×1012.  1(e) the beam intensity is 3.5×1012. 
1(f) the beam intensity is 5.2×1012.  
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Why 6-GeV study?
• The purpose of the 6-GeV

slow acceleration study is 
to experimentally 
investigate the potential 
benefits by adding 25% 
2nd harmonic (30-Hz) to 
the fundamental (15-Hz) 
Booster magnetic ramp.

The only thing we can do now is 
to rescale the 8 GeV ramp to 6 
GeV ramp.
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6 GeV Acceleration and 8 GeV
Acceleration
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Particle Distribution
In the Longitudinal 

Phase Space
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RFSUM Reduction via the Phase Rotation 
between Group-A Stations and Group-B Stations
In general, it is true that RFSUM of group-A stations is equal to RFSUM of 
group-B stations.  The phase rotation is controlled by the paraphase
module.

A, B 180° out of phase, RFSUM ≈ 0

A, B in phase, RFSUM ≈ 2V0

A, B 60° out of phase, RFSUM ≈ 2V0cos(30 °)

A, B 120° out of phase, RFSUM ≈ 2V0cos(60 °)=V0

A

B

60°120°
180°

V0 is the amplitude of RFSUM from
One group stations.
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Synchronous Phase is the phase of the ideal 
particle relative to the RF waveform
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Schematic of the Synchronous Phase 
Detector (SPD)
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Booster 6-GeV Ramps
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Moving bucket factor α(φs):
the ratio of the bucket area with φs relative to the stationary bucket area 

(either φs=0°, or φs=180°)

h=84 is the harmonic number
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Example: Signals at 3.5 ms after Injection
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Charge vs. Bucket Area at 
3.5 ms, 18.5 ms, 21.5 ms, and 27.5 ms
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Charge Density vs. Bucket Area at 
3.5 ms, 18.5 ms, 21.5 ms, and 27.5 ms
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Comparison of the Bucket-Area Measurement at 
6GeV and 8GeV 
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3.Analyzing the dependence 
of the beam energy loss (VL) on the 

beam intensity
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Veff: the effective accelerating voltage seen by the beam 
per Booster turn.

Va: the accelerating voltage required by the rate of change 
of the Booster magnetic field (dB/dt) in a cycle, and is

independent of the beam intensity.

VL: the beam energy loss, which is caused by the real 
impedance of the ring, and is dependent upon the beam 

intensity with a relation of 
VL=a×N+b.

Here, N is the beam intensity (charge); b is DC component
of VL; a is the linear dependence Of VL to N.

).sin( sRFLaeff VVVV ϕ×=+=
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Possible explanation for the differences in 
the slope of VL vs. N
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4.  Design Goals of the Transition Jump System 
(γt System)

• Change γt one unit in 0.1 ms (10 unit/ms) to make the TC 25 
times faster than the normal operation (0.4 unit/ms).

--- reducing the deleterious effects of passing through transition 
at high intensity by reducing the time that the beam spends 
near the transition energy.

Why the TJS has never been used in the 
operation?
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Injection
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Problem

• Quad Steering -- since several γt quads are not 
well aligned relative to the usual closed orbit, 
quad steering causes beam loss, especially for 
high intensity beams. 
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Solution

• Finding Offsets -- a program has been developed for 
calculating offsets of the beam relative to γt quads using the 
difference orbit when γt quads are on and off.

• Horizontal -- A radial orbit offset (ROF) has been 
experimentally applied in finding the optimal radial position 
for centering the beam through all the γt quads.

• Vertical -- the reposition of the beam to the γt quad by 
applying a local three-bump to the beam or by moving the γt

quad.
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ROF ≈ -4.5 is the optimal radial position for centering 
the beam through all the γt quads
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Based upon the vertical offset measurement in Fig.1, the short 12 γt
quad was lowered 4 mm.  Afterward, the vertical offsets were 

measured, the results were shown in Fig. 2. 
!!!!!!!!! 
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Additional problem of 
commissioning γt system

• Require the Booster orbit to be centered 
through all the γt quads during the time of 
pulsing γt quads.  Once the orbit changes, 
quad steering will cause problems! 



34

Conclusions
1. The slow acceleration indeed requires less RF accelerating 

voltages.  However, it also slows down the transition 
crossing rate and makes the beam stay near the transition 
energy longer, which is likely to make the beam energy loss 
increase faster with the beam intensity.  --We would like to 
confirm it in the future study by measuring the bunch length 
near the TC in both  6-GeV and 8-GeV accelerations.   

2. Since we had a successful start to fix the quad steering 
problem, the γt system can provide a faster TC.

3. Combining the slow acceleration (gain extra RF power for 
the high intensity beam) and the γt system (make the TC 
faster), what we might achieve in the future?

More study time!!!
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